實作 ANLS
Average Normalized Levenshtein Similarity,簡稱 ANLS,是一種用於計算兩個字串之間相似性的指標。
Levenshtein Similarity,以下我們簡稱為 LS。
在自然語言處理(NLP)中,我們經常需要比較兩個字串的相似性。LS 是一種常見的度量方法,它衡量了兩個字串之間的「編輯距離」,即通過多少次插入、刪除或替換操作可以將一個字串轉換為另一個字串。
只是 LS 本身並不直觀,因為它取決於字串的長度。為了解決這個問題,我們可以將 LS 標準化為 [0, 1] 區間,這樣我們就可以更容易地理解和比較不同字串之間的相似性,稱為 Normalized Levenshtein Similarity(NLS)。
由於 NLS 指的是一組字串之間的相似性,我們可以將其進一步擴展為 ANLS,它計算了多組字串之間的平均相似性,藉此來橫量模型的性能。
然後......
我們總是找不到喜歡的實作,最後決定自己寫一個。
參考資料
導入必要的庫
首 先,我們需要導入一些必要的庫,特別是由 torchmetrics
實作的 EditDistance
:
from typing import Any, Literal, Optional, Sequence, Union
import torch
from torch import Tensor
from torchmetrics.metric import Metric
from torchmetrics.text import EditDistance
from torchmetrics.utilities.data import dim_zero_cat
由於 EditDistance
已經可以計算 Levenshtein 距離,我們可以直接使用它來計算兩個字串之間的編輯距離。然而,EditDistance
並沒有提供標準化的功能,所以我們需要自己實現這一部分。
實作標準化功能
在這裡,我們繼承 torchmetrics.metric.Metric
的介面,所以我們需要實作 update
和 compute
方法:
class NormalizedLevenshteinSimilarity(Metric):
def __init__(
self,
substitution_cost: int = 1,
reduction: Optional[Literal["mean", "sum", "none"]] = "mean",
**kwargs: Any
) -> None:
super().__init__(**kwargs)
self.edit_distance = EditDistance(
substitution_cost=substitution_cost,
reduction=None # Set to None to get distances for all string pairs
)
# ...
這裡有幾個要點:
- 確保輸入的
preds
和target
是字串列表,否則函數就會計算到「字元」的部分。 - 計算每個字串的最大長度,這樣才能進行標準化。
def update(self, preds: Union[str, Sequence[str]], target: Union[str, Sequence[str]]) -> None:
"""Update state with predictions and targets."""
if isinstance(preds, str):
preds = [preds]
if isinstance(target, str):
target = [target]
distances = self.edit_distance(preds, target)
max_lengths = torch.tensor([
max(len(p), len(t))
for p, t in zip(preds, target)
], dtype=torch.float)
ratio = torch.where(
max_lengths == 0,
torch.zeros_like(distances).float(),
distances.float() / max_lengths
)
nls_values = 1 - ratio
# ...
實作 reduction
參數
我們還需要保留 reduction
參數的發揮空間,如果我們指定 mean
,那就是常見的 ANLS 分數。
除了一般的 mean
,我們也可以使用 sum
或 none
,來完成不同的需求。
def _compute(
self,
nls_score: Tensor,
num_elements: Union[Tensor, int],
) -> Tensor:
"""Compute the ANLS over state."""
if nls_score.numel() == 0:
return torch.tensor(0, dtype=torch.int32)
if self.reduction == "mean":
return nls_score.sum() / num_elements
if self.reduction == "sum":
return nls_score.sum()
if self.reduction is None or self.reduction == "none":
return nls_score
def compute(self) -> torch.Tensor:
"""Compute the NLS over state."""
if self.reduction == "none" or self.reduction is None:
return self._compute(dim_zero_cat(self.nls_values_list), 1)
return self._compute(self.nls_score, self.num_elements)
這裡需要注意的部分是當我們指定 reduction
為 none
時,我們需要將所有的 NLS 值返回,而不是計算平均值。這邊我參考了 torchmetrics.text.EditDistance
的實現方式,使用了 dim_zero_cat
來將列表中的值拼接在一起,確保回傳的是一個 Tensor
。
完整的實作
完整的實作如下:
from typing import Any, Literal, Optional, Sequence, Union
import torch
from torch import Tensor
from torchmetrics.metric import Metric
from torchmetrics.text import EditDistance
from torchmetrics.utilities.data import dim_zero_cat
class NormalizedLevenshteinSimilarity(Metric):
"""
Normalized Levenshtein Similarity (NLS) is a metric that computes the
normalized Levenshtein similarity between two sequences.
This metric is calculated as 1 - (levenshtein_distance / max_length),
where `levenshtein_distance` is the Levenshtein distance between the two
sequences and `max_length` is the maximum length of the two sequences.
NLS aims to provide a similarity measure for character sequences
(such as text), making it useful in areas like text similarity analysis,
Optical Character Recognition (OCR), and Natural Language Processing (NLP).
This class inherits from `Metric` and uses the `EditDistance` class to
compute the Levenshtein distance.
Inputs to the ``update`` and ``compute`` methods are as follows:
- ``preds`` (:class:`~Union[str, Sequence[str]]`):
Predicted text sequences or a collection of sequences.
- ``target`` (:class:`~Union[str, Sequence[str]]`):
Target text sequences or a collection of sequences.
Output from the ``compute`` method is as follows:
- ``nls`` (:class:`~torch.Tensor`): A tensor containing the NLS value.
Returns 0.0 when there are no samples; otherwise, it returns the NLS.
Args:
substitution_cost:
The cost of substituting one character for another. Default is 1.
reduction:
Method to aggregate metric scores.
Default is 'mean', options are 'sum' or None.
- ``'mean'``: takes the mean over samples, which is ANLS.
- ``'sum'``: takes the sum over samples
- ``None`` or ``'none'``: returns the score per sample
kwargs: Additional keyword arguments.
Example::
Multiple strings example:
>>> metric = NormalizedLevenshteinSimilarity(reduction=None)
>>> preds = ["rain", "lnaguaeg"]
>>> target = ["shine", "language"]
>>> metric(preds, target)
tensor([0.4000, 0.5000])
>>> metric = NormalizedLevenshteinSimilarity(reduction="mean")
>>> metric(preds, target)
tensor(0.4500)
"""
def __init__(
self,
substitution_cost: int = 1,
reduction: Optional[Literal["mean", "sum", "none"]] = "mean",
**kwargs: Any
) -> None:
super().__init__(**kwargs)
self.edit_distance = EditDistance(
substitution_cost=substitution_cost,
reduction=None # Set to None to get distances for all string pairs
)
allowed_reduction = (None, "mean", "sum", "none")
if reduction not in allowed_reduction:
raise ValueError(
f"Expected argument `reduction` to be one of {allowed_reduction}, but got {reduction}")
self.reduction = reduction
if self.reduction == "none" or self.reduction is None:
self.add_state(
"nls_values_list",
default=[],
dist_reduce_fx="cat"
)
else:
self.add_state(
"nls_score",
default=torch.tensor(0.0),
dist_reduce_fx="sum"
)
self.add_state(
"num_elements",
default=torch.tensor(0),
dist_reduce_fx="sum"
)
def update(self, preds: Union[str, Sequence[str]], target: Union[str, Sequence[str]]) -> None:
"""Update state with predictions and targets."""
if isinstance(preds, str):
preds = [preds]
if isinstance(target, str):
target = [target]
distances = self.edit_distance(preds, target)
max_lengths = torch.tensor([
max(len(p), len(t))
for p, t in zip(preds, target)
], dtype=torch.float)
ratio = torch.where(
max_lengths == 0,
torch.zeros_like(distances).float(),
distances.float() / max_lengths
)
nls_values = 1 - ratio
if self.reduction == "none" or self.reduction is None:
self.nls_values_list.append(nls_values)
else:
self.nls_score += nls_values.sum()
self.num_elements += nls_values.shape[0]
def _compute(
self,
nls_score: Tensor,
num_elements: Union[Tensor, int],
) -> Tensor:
"""Compute the ANLS over state."""
if nls_score.numel() == 0:
return torch.tensor(0, dtype=torch.int32)
if self.reduction == "mean":
return nls_score.sum() / num_elements
if self.reduction == "sum":
return nls_score.sum()
if self.reduction is None or self.reduction == "none":
return nls_score
def compute(self) -> torch.Tensor:
"""Compute the NLS over state."""
if self.reduction == "none" or self.reduction is None:
return self._compute(dim_zero_cat(self.nls_values_list), 1)
return self._compute(self.nls_score, self.num_elements)
if __name__ == "__main__":
anls = NormalizedLevenshteinSimilarity(reduction='mean')
preds = ["rain", "lnaguaeg"]
target = ["shine", "language"]
print(anls(preds, target))
最後
我們可以保證這個實作是正確的嗎?
答案是不行,如果你發現了任何問顫,請告訴我們,非常感謝!