當模型 train 壞了,我們總是會想知道是什麼原因導致的,這時候我們需要檢查訓練主機的環境資訊,例如:Python 版本、PyTorch 版本、CUDA 版本、GPU 資訊、CPU 資訊、RAM 資訊、磁碟資訊、IP 地址等等。
我們分享一個自己手刻的 Python 小工具,可以快速查看這些資訊,雖然說不是包山包海,但基本的問題排查應該足夠用。
一般來說,我們會在訓練啟動的環節,將環境資訊紀錄到訓練主機的日誌裡面。
安裝
我們先安裝必要套件:
pip install psutil requests
提示
完整的程式碼在 Github 上,並且我們同步放在本篇文章的最後面。
使用 get_package_versions
我們假設你有安裝 docsaidkit
,並且已經在專案裡面,則可以透過以下指令測試:
from docsaidkit import get_package_versions
get_package_versions()
執行後得到結果:
{
"PyTorch Version": "2.1.1+cu121",
"PyTorch Lightning Version": "2.1.2",
"TensorFlow Error": "No module named 'tensorflow'",
"Keras Error": "No module named 'keras'",
"NumPy Version": "1.24.4",
"Pandas Version": "2.0.3",
"Scikit-learn Version": "1.3.2",
"OpenCV Version": "4.8.1"
}
- PyTorch Version: PyTorch 版本
- PyTorch Lightning Version: PyTorch Lightning 版本
- TensorFlow Error: TensorFlow 版本
- Keras Error: Keras 版本
- NumPy Version: NumPy 版本
- Pandas Version: Pandas 版本
- Scikit-learn Version: Scikit-learn 版本
- OpenCV Version: OpenCV 版本
使用 get_gpu_cuda_versions
測試程式:
from docsaidkit import get_gpu_cuda_versions
get_gpu_cuda_versions()
執行後得到結果:
{
"CUDA Version": "12.1",
"NVIDIA Driver Version": "535.129.03"
}
- CUDA Version: CUDA 版本
- NVIDIA Driver Version: NVIDIA 驅動版本
使用 get_system_info
測試程式:
from docsaidkit import get_system_info
get_system_info()
執行後得到結果:
{
"OS Version": "Linux-6.2.0-37-generic-x86_64-with-glibc2.34",
"CPU Model": "13th Gen Intel(R) Core(TM) i9-13900K",
"Physical CPU Cores": 24,
"Logical CPU Cores (incl. hyper-threading)": 32,
"Total RAM (GB)": 125.56,
"Available RAM (GB)": 110.9,
"Disk Total (GB)": 1832.21,
"Disk Used (GB)": 188.94,
"Disk Free (GB)": 1550.12,
"GPU Info": "NVIDIA GeForce RTX 4090",
"IPV4 Address": ["192.168.---.---"],
"IPV4 Address (External)": "---.---.---.---",
"MAC Address": ["--.--.--.--.--.--"]
}
- OS Version: 作業系統版本
- CPU Model: CPU 型號
- Physical CPU Cores: 物理 CPU 核心數
- Logical CPU Cores (incl. hyper-threading): 邏輯 CPU 核心數 (包括超執行緒)
- Total RAM (GB): 總 RAM 容量 (GB)
- Available RAM (GB): 可用 RAM 容量 (GB)
- Disk Total (GB): 磁碟總容量 (GB)
- Disk Used (GB): 已使用的磁碟容量 (GB)
- Disk Free (GB): 空閒磁碟容量 (GB)
- GPU Info: GPU 資訊
- IPV4 Address: 內部 IPV4 地址
- IPV4 Address (External): 外部 IPV4 地址
- MAC Address: MAC 地址
注意事項與替代方案
由於我們是在 Ubuntu 上撰寫本函數,因此在其他作業系統上可能會有劇情之外的發展。
以下幾個可能需要注意的要點:
- 因作業系統的限制,某些函數可能無法在所有平台上運行。例如:
get_cpu_info
在 Windows 上不會顯示完整的 CPU 型號。在這種情況下,你可以考慮使用其他工具或手動獲取此資訊。 - 如果你在 Windows 環境中,無法直接使用
nvidia-smi
來獲取 GPU 資訊,請確保已安裝 NVIDIA 驅動和相關的工具,並在命令提示符視窗中執行它。 - 外部 IP 地址是從
https://httpbin.org/ip
獲取的,所以必須確保網路連線是活躍的。
程式碼
import platform
import socket
import subprocess
import psutil
import requests
def get_package_versions():
"""
Get versions of commonly used packages in deep learning and data science.
Returns:
dict: Dictionary containing versions of installed packages.
"""
versions_info = {}
# PyTorch
try:
import torch
versions_info["PyTorch Version"] = torch.__version__
except Exception as e:
versions_info["PyTorch Error"] = str(e)
# PyTorch Lightning
try:
import pytorch_lightning as pl
versions_info["PyTorch Lightning Version"] = pl.__version__
except Exception as e:
versions_info["PyTorch Lightning Error"] = str(e)
# TensorFlow
try:
import tensorflow as tf
versions_info["TensorFlow Version"] = tf.__version__
except Exception as e:
versions_info["TensorFlow Error"] = str(e)
# Keras
try:
import keras
versions_info["Keras Version"] = keras.__version__
except Exception as e:
versions_info["Keras Error"] = str(e)
# NumPy
try:
import numpy as np
versions_info["NumPy Version"] = np.__version__
except Exception as e:
versions_info["NumPy Error"] = str(e)
# Pandas
try:
import pandas as pd
versions_info["Pandas Version"] = pd.__version__
except Exception as e:
versions_info["Pandas Error"] = str(e)
# Scikit-learn
try:
import sklearn
versions_info["Scikit-learn Version"] = sklearn.__version__
except Exception as e:
versions_info["Scikit-learn Error"] = str(e)
# OpenCV
try:
import cv2
versions_info["OpenCV Version"] = cv2.__version__
except Exception as e:
versions_info["OpenCV Error"] = str(e)
# ... and so on for any other packages you"re interested in
return versions_info
def get_gpu_cuda_versions():
"""
Get GPU and CUDA versions using popular Python libraries.
Returns:
dict: Dictionary containing CUDA and GPU driver versions.
"""
cuda_version = None
# Attempt to retrieve CUDA version using PyTorch
try:
import torch
cuda_version = torch.version.cuda
except ImportError:
pass
# If not retrieved via PyTorch, try using TensorFlow
if not cuda_version:
try:
import tensorflow as tf
cuda_version = tf.version.COMPILER_VERSION
except ImportError:
pass
# If still not retrieved, try using CuPy
if not cuda_version:
try:
import cupy
cuda_version = cupy.cuda.runtime.runtimeGetVersion()
except ImportError:
cuda_version = "Error: None of PyTorch, TensorFlow, or CuPy are installed."
# Try to get Nvidia driver version using nvidia-smi command
try:
smi_output = subprocess.check_output([
"nvidia-smi",
"--query-gpu=driver_version",
"--format=csv,noheader,nounits"
]).decode("utf-8").strip()
nvidia_driver_version = smi_output.split("\n")[0]
except Exception as e:
nvidia_driver_version = f"Error getting NVIDIA driver version: {e}"
return {
"CUDA Version": cuda_version,
"NVIDIA Driver Version": nvidia_driver_version
}
def get_cpu_info():
"""
Retrieve the CPU model name based on the platform.
Returns:
str: CPU model name or "N/A" if not found.
"""
if platform.system() == "Windows":
return platform.processor()
elif platform.system() == "Darwin":
# For macOS
command = "sysctl -n machdep.cpu.brand_string"
return subprocess.check_output(command, shell=True).strip().decode()
elif platform.system() == "Linux":
# For Linux
command = "cat /proc/cpuinfo | grep "model name" | uniq"
return subprocess.check_output(command, shell=True).strip().decode().split(":")[1].strip()
else:
return "N/A"
def get_external_ip():
try:
response = requests.get("https://httpbin.org/ip")
return response.json()["origin"]
except Exception as e:
return f"Error obtaining IP: {e}"
def get_system_info():
"""
Fetch system information like OS version, CPU info, RAM, Disk usage, etc.
Returns:
dict: Dictionary containing system information.
"""
info = {
"OS Version": platform.platform(),
"CPU Model": get_cpu_info(),
"Physical CPU Cores": psutil.cpu_count(logical=False),
"Logical CPU Cores (incl. hyper-threading)": psutil.cpu_count(logical=True),
"Total RAM (GB)": round(psutil.virtual_memory().total / (1024 ** 3), 2),
"Available RAM (GB)": round(psutil.virtual_memory().available / (1024 ** 3), 2),
"Disk Total (GB)": round(psutil.disk_usage("/").total / (1024 ** 3), 2),
"Disk Used (GB)": round(psutil.disk_usage("/").used / (1024 ** 3), 2),
"Disk Free (GB)": round(psutil.disk_usage("/").free / (1024 ** 3), 2)
}
# Try to fetch GPU information using nvidia-smi command
try:
gpu_info = subprocess.check_output(
["nvidia-smi", "--query-gpu=name", "--format=csv,noheader,nounits"]
).decode("utf-8").strip()
info["GPU Info"] = gpu_info
except Exception:
info["GPU Info"] = "N/A or Error"
# Get network information
addrs = psutil.net_if_addrs()
info["IPV4 Address"] = [
addr.address for addr in addrs.get("enp5s0", []) if addr.family == socket.AF_INET
]
info["IPV4 Address (External)"] = get_external_ip()
# Determine platform and choose correct address family for MAC
if hasattr(socket, "AF_LINK"):
AF_LINK = socket.AF_LINK
elif hasattr(psutil, "AF_LINK"):
AF_LINK = psutil.AF_LINK
else:
raise Exception(
"Cannot determine the correct AF_LINK value for this platform.")
info["MAC Address"] = [
addr.address for addr in addrs.get("enp5s0", []) if addr.family == AF_LINK
]
return info