TorchEngine
-
Description: TorchScript inference wrapper (
torch.jit.load) with simple input normalization and numpy outputs. -
Dependencies
- Requires
torch(installcapybara-docsaid[torchscript]first).
- Requires
-
Notes
run(feed)builds model inputs infeed.values()order (current behavior).- If model output is a tuple/list and you specified
output_names, its length must match the number of outputs, otherwiseValueErroris raised.
-
Example
import numpy as np
from capybara.torchengine import TorchEngine
engine = TorchEngine("model.pt", device="cpu")
outputs = engine.run({"input": np.zeros((1, 3, 224, 224), dtype=np.float32)})
print(outputs.keys())